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Abstract

In this survey, we explore the connections between knot theory and the geometry of hyper-
bolic 3-space. In particular, we investigate a knot/link invariant, the hyperbolic volume of the
knot complement. We provide a full computation of this invariant for the figure-eight knot.

1 Introduction
The discovery of the relation between hyperbolic structure and knot complements was independently
discovered by Robert Riley and William Thurston in the mid-1970s [Ril13]. Riley was able to put
a hyperbolic structure on the figure-8 knot complement by taking a quotient of H3 by a group
relating to the figure-8 knot. In contrast to Riley’s algebraic approach, Thurston’s approach was
geometric; he directly decomposed the figure-8 knot complement into two ideal tetrahedra, and
this is the approach we will follow in this paper. This connection between topology and geometry
was surprising - at the time, topologists saw hyperbolic geometry as an “arcane side branch of
mathematics” [Thu94]. This relation was explored further with Thurston’s famous Geometrization
Conjecture, though it took some time for topologists to “understand what [it] meant, what it was
good for, and why it was relevant” [Thu94].

2 Preliminaries
We first give some definitions to remind the reader of the essentials from hyperbolic geometry and
knot theory relevant to this paper.

2.1 Hyperbolic Geometry
Definition 2.1. We define hyperbolic 3-space as H3 = {(x, y, u) ∈ R3 : u > 0}. The hyperbolic length
of a piecewise differentiable curve γ : [a, b] → H3 with parameterization γ(t) = (x(t), y(t), u(t)) is
lhyp(γ) =

∫ b

a

√
x′(t)2+y′(t)2+u′(t)2

u(t) dt. The hyperbolic distance between two points P,Q ∈ H3 is defined
dhyp(P,Q) = inf{lhyp(γ)}, where the infimum is taken over all piecewise differentiable curves γ from
P to Q.

There is another model for hyperbolic geometry, namely, the Poincaré ball model. One can
intuitively imagine this by taking the upper half space and dragging/collapsing the points at infinity
upwards, to obtain a ball B3 (note the points at infinity, or equivalently, the boundary of the ball is
not included as points in H3). We will swap between these models, as each model has its advantages
and disadvantages that we can leverage. More details on hyperbolic 3-space can be found in [Bon09].
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2.2 Knot Theory
Definition 2.2. A knot K ⊆ S3 is a smooth embedding of the circle S1 in S3. We often refer to
the knot as the image of the embedding.

By referring to the knot as the image of the embedding, we no longer care about the orientation
of the embedding (i.e., the knot is a set rather than an embedding). Considering oriented knots are
interesting in their own right, but we will not make that distinction here.

As another note, knots can usually be studied in R3 and S3 without much meaningful difference.
However, if we want to use geometry to study knots (which we will do later), we want to work in S3,
as we can place a complete hyperbolic metric of finite volume on some manifolds that are subsets
of S3. In R3, we could not do this. Generally, the fact that S3 is compact and not contractible is
helpful as well.

Definition 2.3. A link L ⊆ S3 of k-components is a smooth embedding of a disjoint union of k
circles in S3.

In other words, a link is a finite union of disjoint knots.

Definition 2.4. Two knots K1,K2 are equivalent if there is an orientation preserving piecewise-
linear homeomorphism h : S3 → S3 such that h(K1) = K2.

Informally, knots are equivalent if we can deform one without ripping or crossing themselves so
that one matches up with the other. This is equivalent to saying two knots K1,K2 are equivalent if
there is an ambient isotopy between the embeddings. One of the central questions of knot theory is
classifying knots up to isotopy.

Definition 2.5. A knot (or link) invariant is a function from the set of knots (or links) to some
other set, where equivalent knots must have the same output.

The codomain can be anything; some examples include {0, 1} (true/false), Z, R, and the set
of polynomials. Invariants are central to the classification of knots – if two knots have different
invariant values, then they cannot be equivalent.

Definition 2.6. For a knot K, the knot complement is the open manifold S3 \K.

We now present Thurston’s Geometrization Theorem for Knot Complements.

Theorem 2.1 (Thurston, 1974). For any knot K ⊆ S3, exactly one of the following holds.

(a) K is a torus knot T (p, q) with q ≥ 2;

(b) K is a satellite of a nontrivial knot;

(c) S3 \K (the knot complement) admits a metric d which is

(i) complete
(ii) topologically equivalent to the Euclidean metric

(iii) locally isometric to the hyperbolic metric dhyp of H3.

Knots which satisfy (c) are said to be hyperbolic. For more information on the first two types of
knots, see [Bon09] or [Ada84].

3 Hyperbolic Volume
In this section, we’ll define the hyperbolic volume and explore how to compute it. Informally, we want
to divide the space into hyperbolic tetrahedra, compute the volume of each hyperbolic tetrahedron,
and then add the volumes together.
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3.1 Hyperbolic Triangulations
Given a manifold, how can we describe it? One method is to triangulate our manifold, which is also
a useful technique for computations on manifolds.

Definition 3.1. A manifold M is a hyperbolic manifold, if it is a Riemannian manifold and is locally
isometric to Hn.

That is to say, each point of M has a neighborhood which is isometric to a neighborhood of Hn.
We will only care about when n = 3. Our goal is now to build a hyperbolic manifold, and we will
do so by gluing together hyperbolic polyhedra via hyperbolic isometries.

Definition 3.2. A hyperbolic polyhedron is a compact subset of H3 obtained by taking the inter-
section of a finite collection of half-spaces. An ideal polyhedron is a polyhedron with vertices “at
infinity.”

In the ball model, one can think of an ideal polyhedron as a polyhedron with vertices on the
boundary of the ball (that is, at ∞). Now how can we decompose a hyperbolic manifold into (ideal)
polyhedra? We will do a concrete example in Section 5, but we leave the more general case to the
discussion in [Thu79] and [Pur20]. If we can decompose our manifold into tetrahedra only, we say
our manifold has been triangulated.

Figure 1: An ideal tetrahedra in the ball model.

Let’s suppose we have a collection of ideal hyperbolic polyhedra and some gluing information.
The gluing may or may not give a hyperbolic manifold (in fact, it might not even give a manifold!),
but the following theorem gives us a criterion as to when the gluing gives a hyperbolic manifold.

Theorem 3.1. Let M be obtained by gluing hyperbolic polyhedra (possibly ideal) P1, . . . , Pm by
identifying their faces in pairs via isometries. Let P = P1 t . . . t Pm be the disjoint union. Let
q : P → M be the quotient map for the gluing. Suppose each point x ∈ M has a neighborhood Ux

and an open mapping φx : Ux → Bε(0) which is a homeomorphism and restricts to an isometry on
each component of Ux ∩ q(P \ ∂P ). Then M inherits the hyperbolic structure.

We refer to [Lac00] for the proof of this theorem. Informally, this theorem is just saying if every
point of M has a neighborhood isometric to a ball in H3, then M inherits the hyperbolic structure.
In the special case of H3, it nearly suffices to check that for every edge, taking the sum of the dihedral
angles of all edges glued to this edge, sums to 2π. There is a second condition, but the background to
state it is beyond the level of this paper. For further details, see the Gluing Consistency Conditions
in [Thu79] or Gluing Equations in [Pur20].

Lemma 3.2. Let F1, F2, F3 be three faces of an ideal tetrahedron in H3. Let α, β, γ be the dihedral
angles between F1, F2, then F2, F3, and F3, F1, respectively. Then α+ β + γ = π.

Proof. Let’s work in the upper half space model. By isometries of H3, we may assume that the
hyperplanes that contain F1, F2, F3 are vertical Euclidean planes, since vertical lines are geodesics
in H3. But then α, β, γ are the interior angles of a Euclidean triangle, hence sum to π.
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We call the angles α, β, γ the dihedral angles of the tetrahedron.

Lemma 3.3. Every ideal tetrahedron in H3 is in direct correspondence (up to orientation-preserving
isometries) with triples α, β, γ ∈ (0, π) whose sum is π. These three angles are the dihedral angles
of the tetrahedron.

Proof idea. Given an ideal tetrahedron, we can get the three angles as described in the proof of the
previous lemma. Now given a triple α, β, γ ∈ (0, π) summing to π, we can find a Euclidean triangle
in the x-y plane (i.e., in ∂H3) with these angles, and consider the ideal tetrahedron with vertices at
the vertices of this triangle, and the point at ∞. We can use hyperbolic isometries to match up any
two triangles with the same interior angles.

For a more in-depth proof, see [Lac00].

3.2 Computing Hyperbolic Volume
We are now ready to compute the volume.

Definition 3.3. The Lobachevsky function Λ(θ) : R → R is defined

Λ(θ) = −
∫ θ

0

ln |2 sin t|dt

Theorem 3.4 (Volume of hyperbolic ideal tetrahedra). Let α, β, γ ∈ (0, π) such that α+β+γ = π,
so they form a hyperbolic ideal tetrahedron T . Then the volume is vol(T ) = Λ(α) + Λ(β) + Λ(γ).

A proof of this theorem can be found in [Thu79]. To numerically compute the Lobachevsky
function, we can use the following series expansion, which converges relatively quickly.

Lemma 3.5. The Lobachevsky function has series expansion

Λ(θ) = θ

(
1− ln |2θ|+

∞∑
n=1

Bn

2n

(2θ)2n

(2n+ 1)!

)

where Bn denotes the even Bernoulli numbers (this may be denoted B2n in some literature).

Note that the derivatives of the Lobachevsky function are

d

dθ
Λ(θ) = − ln |2 sin θ|

d2

dθ2
Λ(θ) = − cot θ
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Also, it is well known that the Laurent series for cotx is

cotx =

∞∑
n=0

(−1)n
22nBn

(2n)!
x2n−1 =

1

x
+

∞∑
n=1

(−1)n22nBn

(2n)!
x2n−1

and so we can integrate this series twice to obtain the desired series expansion. While the series for
cotx only converges for 0 < |x| < π, it can be shown that Λ(θ) is periodic with period π and that
the series expansion converges at θ = π, so this expansion is valid everywhere.

3.3 Hyperbolic Volume as an Invariant
Definition 3.4 (Hyperbolic volume). Let M = S3 \ K and suppose M can be decomposed into
tetrahedra T1, . . . Tm. The hyperbolic volume, denoted hypvol, is defined as the sum hypvol(S3−K) =∑m

n=1 vol(Tn). By abuse of terminology, we will say ‘the hyperbolic volume of a knot K’ to mean
the hyperbolic volume of the knot complement S3 \K.

It is not at all obvious that two seemingly different triangulations of the space will have the
same volume, nor if the triangulation remains the same if the knot is ‘wiggled’ a little, meaning this
definition may not even be well-defined! However, the following theorem ensures there is only one
unique, complete, hyperbolic structure (if a manifold can admit one), up to isometry.

Theorem 3.6 (Mostow’s Rigidity Theorem). Let M and N be complete hyperbolic 3-manifolds with
finite volume. If f : M → N is a homotopy equivalence, then f is homotopic to an isometry from
M to N .

For those who do not know what a homotopy equivalence is, a weaker form of the theorem
states if M and N are homeomorphic, then the spaces are isometric. A proof of the theorem can
be found in [Bon09]. This theorem shows that hyperbolic volume is indeed an invariant, since if we
can give a complete hyperbolic structure on a knot complement, then any other complete hyperbolic
structure on the space will be isometric, and thus have the same volume! However, this invariant is
not a complete classifying invariant: there exist different hyperbolic knots with the same hyperbolic
volume.

We finish this section with some fun facts about hyperbolic volume (without proof).

• Figure 2 shows two knots with the same hyperbolic volume, of approximately 2.828122088.

• Only a finite number of knots can have the same hyperbolic volume.

• Hyperbolic volume distinguishes all hyperbolic knots with less than 10 crossings. The values
can be found on the database KnotInfo.

• The program SnapPy is used to compute the hyperbolic volume of knots.

Figure 2: The knots 52 and 12n242.
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4 The Figure-Eight Knot
We will analyze the figure-eight knot, the simplest hyperbolic knot. For this section, let K denote
the figure-eight knot. Figures in this section were created by myself using Inkscape (a free and open
source vector graphics editor, which I highly recommend!), and figures were inspired from [Fra87],
[Pur20], and [Seg14].

Figure 3: The figure-eight knot.

Theorem 4.1 (Riley ’73, Thurston ’78). The figure-eight knot complement is a hyperbolic manifold.

To prove this theorem, our general strategy will be to construct a triangulation of the knot
complement, and then show that it admits a hyperbolic structure. Surprisingly, we will only need
two tetrahedra!

First, let’s imagine the figure-eight knot sitting in a plane, except at each intersection, we drop
the edge that crosses below downwards (that is, out of the plane). At each crossing, we will then
introduce four auxiliary green edges, with orientations specified. Note that one can ‘drag’ the double-
arrow green edge along the knot to match up with the other double-arrow green edge, and likewise
for the single-arrow green edge pair.

Figure 4: The figure-eight knot in the plane, with auxiliary green edges added.
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Now imagine there are two balloons: one above the plane and one below the plane, and we inflate
them simultaneously. How will the balloons meet? Far away from the knot, they will meet at a
plane. But what about regions where the knot exists? Locations on the knot far from crossings are
easy, they meet at a plane again (the plane that they meet at is shown in gray).

Figure 5: Far from a crossing, the balloons meet at a plane.

Let’s analyze what occurs at a crossing. We’ll look specifically at the bottom left crossing in
Figure 4 corresponding to the double arrow pointing up (all the other crossings are dealt with
similarly). The top balloon will push downwards but want to ‘wrap’ around the knot, as pictured
in Figure 6. The balloon from below pushes upwards. In other words, the balloon on top fills the
space above the gray region, and the balloon on the bottom fills the space below.

Figure 6: The planes that the balloons meet at, near a crossing

7



Math 4803 Term Paper Ethan Phan

These two figures connect with some smoothing, as seen in Figure 5.

Figure 7: Smoothing between sections of different elevations.

Let’s look back at Figure 6. Taking a birds-eye view from above, the top balloon “sees” the
top strand of the knot as a line. However, it sees the bottom strand of the knot as a line with the
auxiliary green edge in the middle, with the arrows pointing towards the center, as described in the
left image of Figure 8. Alternatively, you could imagine that you are on top of this structure, and
if you were to feel this crossing with your fingers, you would “feel” the two green arrows pointing
towards the center. On the other hand, the bottom balloon “sees” the right image of Figure 8 (and
from below, “feels’ the two green arrows pointing away. Take note that from above (in the left
image), it appears as if the strand going from the bottom left to top right passes above. However,
taking a view from below, the strand going from top right to bottom left passes “above.” Also
observe the directions of the arrows: from above, the arrows point inwards, and from below, the
arrows point outwards. The lighter color region represents the portion that is closer to the viewer.

Figure 8: Left: What the top balloon “sees,” from above. Right: What the bottom balloon “sees,”
from below.
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We’ll now apply this same technique to all four crossings. In Figure 9, on the left, we see what
the top balloon “sees” throughout the entire knot (from above), and on the right, we see what the
bottom balloon “sees” (from below). Note that the crossings swap since we change perspectives. We
omit the coloring of gray regions for clarity of crossings, but each of the letters represents a ‘face’ of
the boundary between the balloons (including D, the outer face).

Figure 9: Left: What the top balloon “sees,” from above. Right: What the bottom balloon “sees,”
from below.

We now want to relate our balloon analogy to tetrahedra. We can imagine the top and bottom
balloons as two ideal tetrahedra by shrinking the knot to the ideal vertices of the tetrahedra. Re-
member that we are trying to model the knot complement, and so the knot itself (represented by blue
in the previous figures) should not exist in the tetrahedra. So, we retract each blue strand of the knot
to a single ideal vertex. This is a valid homeomorphism because we are trying to build a triangula-
tion of the knot complement. Considering the ball model of H3, the knot itself lies on the boundary
of the ball, and the complement of a strand on the boundary is homeomorphic to the complement
of a point on the boundary (though a point and interval are certainly not homeomorphic!).

Let’s turn our attention to what the top balloon ‘sees’ and shrink the strands to ideal vertices.
The first image of Figure 10 shows the result of this process. Each letter represents a ‘face’ of the
boundary between the two balloons (and soon to be two tetrahedra). In the second image, we adjust
the edges to be more suggestive of a tetrahedron. Now take a look at the bigons E and F . As noted
before, taking a look at Figure 4, the single-arrows edge can be dragged along the knot so that they
are identified, and likewise with the double-arrows edge. So we can close the bigons E and F by
gluing the identified edges bounding E and F together to obtain the final image in Figure 10, which
is an ideal tetrahedron with faces A,B,C, and D.

Figure 10: From the perspective of the top tetrahedron. First: The result of shrinking the knot
strands to ideal vertices. Second: Moving some edges around (but keeping the structure the same).
Third: Combining the edges to close the bigons F and E.
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Figure 11: From the perspective of the bottom tetrahedron. First: The result of shrinking the knot
strands to ideal vertices. Second: Moving some edges around (but keeping the structure the same).
Third: Combining the edges to close the bigons F and E.

As William Menasco once said, we “let bigons be byegones” [Men19].
We repeat the same process to the bottom polyhedron, obtaining a second tetrahedron corre-

sponding to the ‘bottom’ balloon, as in Figure 11. The final step is to glue/identify each of the
four faces together, ensuring that the edges bordering each face are oriented correctly and match
together, as described in Figure 12. Thus, we have constructed a decomposition of the figure-8 com-
plement into two ideal tetrahedra, where the knot lives in the ideal vertex, at ∞ (all ideal vertices
are identified, which can be checked by vertex chasing). It is of course quite challenging to actually
visualize this triangulation, but the construction is complete.

Figure 12: The gluing information for the two tetrahedra.
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We now must show the 3-manifold we’ve constructed admits a hyperbolic structure.

Definition 4.1. A polyhedron P is regular if there is an isometry of H3 which sends any of the
vertices of P to any other permutation of the vertices of P .

Let’s now finish computing the hyperbolic volume. We can construct a regular ideal tetrahedron
by taking a regular tetrahedron in R3 centered at the origin, such that each of the vertices is on the
sphere S2. Then interpreting this tetrahedron in the ball model of H3, we obtain a regular ideal
tetrahedron; any permutation of vertices is realized by an orthogonal transformation of R3 (i.e.,
rotations in 3-space), which is an isometry in H3.

The dihedral angles of this tetrahedron are π
3 ,

π
3 ,

π
3 . Gluing two copies of the regular ideal

tetrahedron by the gluing information in Figure 12, we obtain a hyperbolic manifold. This is
because by analyzing the gluing we see each edge is glued to 6 other edges. Thus, the angle sum
is 2π, which guarantees a hyperbolic manifold, disregarding the second condition mentioned after
Theorem 3.1 (which indeed is satisfied). Hence the hyperbolic volume of the knot by Theorem 3.4
is

hypvol(K) = 6Λ
(π
3

)
≈ 2.0298832

5 Conclusion
5.1 Open Problems

• Though we can calculate the hyperbolic volume to arbitrary precision, is the hyperbolic volume
of the knot complement (of any knot) rational or irrational?

• There is a procedure to decompose any hyperbolic knot complement into polyhedra (described
in [Pur20]), but naïvely subdividing the polyhedra into tetrahedra may create invalid tetra-
hedra (they may be flat or oriented the wrong way). Does every hyperbolic knot complement
have a triangulation? More generally, does every hyperbolic manifold have a triangulation?

5.2 Further Reading
These resources give a more formal treatment of hyperbolic geometry and their interactions with
the topology of knots and manifolds.

• Jessica Purcell, Hyperbolic Knot Theory

• William Thurston, The Geometry and Topology of 3-Manifolds

• Marc Lackenby, Lecture Notes on Hyperbolic Manifolds (Hillary 2000)
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